4-METHOXY-1-(N-PHENYL)IMINONAPHTHALENE

The authors thank the Natural Sciences and Engineering Research Council of Canada for financial support.

References

BERNSTEIN, J. (1972). J. Chem. Soc. Perkin Trans. 2, pp, 946–950. BÜRGI, H. B. & DUNITZ, J. D. (1970). Helv. Chim. Acta, 53, 1747–1764.

- BÜRGI, H. B. & DUNITZ, J. D. (1971). Helv. Chim. Acta, 54, 1255-1260.
- CAMERON, T. S. & CORDES, R. E. (1979). Acta Cryst. B35, 748-750.
- DAVIES, E. K. (1983). The CHEMGRAF Suite. Chemical Crystallography Laboratory, Univ. of Oxford, England.
- International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)

SHELDRICK, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.

as therapeutically effective agents (Braquet & God-

froid, 1986; Godfroid & Braquet, 1986; Corey, Chen &

Parry, 1988). We recently reported some early

investigations aimed at the design of such antagonists

(Peterson, Smillie & Rogers, 1989; Peterson, Do & Rogers, 1989), which were modeled upon naturally

occurring furanoid lignans (Braquet & Godfroid, 1986; Biftu & Stevenson, 1987) and Merck Sharp & Dohme's

potent PAF antagonists L-652,732 and L-659,989

(Hwang et al., 1985; Biftu, Gamble, Doebber, Hwang,

Shen, Snyder, Springer & Stevenson, 1986; Wu, Biftu & Doebber, 1986; Ponpipom, Hwang, Doebber, Acton,

Alberts, Biftu, Brooker, Bugianesi, Chabala, Gamble, Graham, Lam & Wu, 1988). In our approach, X-ray

crystallography is projected to provide not only detail

about the three-dimensional topography of a compound and its congeneric series, but also information about the

molecular nature of the biological receptor site through

an understanding of the intermolecular interactions that

stabilize the crystal lattice (Codding & Muir, 1985;

Codding, 1988). Herein we describe the X-ray crystal

structure and an analysis of the closest contacts between neighboring molecules in the crystal lattice for

the title compound, prepared en route to hinokin, a

phytolignan member of the PAF-antagonistic family of prestegane natural products (Braquet & Godfroid,

Acta Cryst. (1989). C45, 1164-1167

Platelet Activating Factor Antagonist Design. 3. X-ray Crystal Structure and Intermolecular Crystal Lattice Interactions of Methyl *trans*-4-Acetoxymethyl-4,5-dihydro-2,5-bis(3,4-methylenedioxyphenyl)-3-furancarboxylate

BY JOHN R. PETERSON,*† DAVID B. HORSLEY, JAMES A. BROZIK AND ROBIN D. ROGERS*

The Michael Faraday Laboratories, Department of Chemistry, Northern Illinois University, DeKalb, IL 60115, USA

(Received 5 December 1988; accepted 23 December 1988)

1986).

Abstract. $C_{23}H_{20}O_9$, $M_r = 440.41$, monoclinic, $P2_1/c$, a = 11.433 (1), b = 7.808 (2), c = 23.313 (3) Å, $\beta = 99.67$ (1)°, V = 2052 Å³, Z = 4, $D_x = 1.43$ g cm⁻³, $\lambda(Mo K\alpha) = 0.71073$ Å, $\mu = 0.69$ cm⁻¹, F(000) = 920, T = 293 K, final R = 0.048 for 1645 observed $[F_o \ge 5\sigma(F_o)]$ reflections. The observed structure reveals a trans relationship for the 4-acetoxymethyl and 5-aryl substituents. The 4,5-dihydrofuran ring system adopts an envelope conformation. There is no crystallographically imposed symmetry. Several intermolecular van der Waals interactions occur in the cell lattice of this compound.

Introduction. Platelet-activating-factor (PAF) is an important mediator of mammalian cell function and it is thought to play a significant role in several alterations of the pulmonary, intravascular, and cardiovascular systems (Venuti, 1985; McManus, 1986; Etienne, Hecquet & Braquet, 1988; Smith, Rubin & Patterson, 1988). The specific binding of PAF to cellular membrane receptor sites is the first step in its biological functions (McManus, 1986; Hwang, Lam, Biftu, Beattie & Shen, 1985). Potent and selective PAF antagonists provide leads to the molecular characteristics of the PAF receptor site in addition to serving

Experimental. The title dihydrofuran was prepared in 43% isolated yield by manganese(III) acetate oxidation

© 1989 International Union of Crystallography

1164

^{*} Authors to whom correspondence should be addressed.

[†]Current address: Department of Pharmacognosy, School of Pharmacy, The University of Mississippi, University, MS 38677, USA.

of methyl 3,4-methylenedioxybenzoylacetate in the presence of trans-3-(3,4-methylenedioxyphenyl)-2propen-1-ol acetate (Yang, Trost & Fristad, 1987). The product was purified by flash chromatography on silica gel while eluting with 15% ethyl acetate in petroleum ether. Crystals (m.p. 373-374 K) were obtained by slow evaporation of a methanol solution of the title compound. The X-ray structure was in full agreement with the spectral and analytical data.* D_m not determined. Crystal $0.15 \times 0.20 \times 0.25$ mm. Enraf-Nonius CAD-4 diffractometer, graphite-monochromated Mo K α . Cell constants from setting angles of 25 reflections ($\theta > 19^\circ$). Correction for Lorentz–polarization effect. $\theta_{max} = 50^{\circ}$; h 0 to 13, k 0 to 9, l - 27 to 27. Standard reflections observed every 3600 s of datacollection time (500, 020, 006), variation = $\pm 2\%$. 4080 reflections measured, 1645 independent observed reflections $[F_a \ge 5\sigma(F_a)]$. Structure solved utilizing MULTAN (Main, Fiske, Hull, Lessinger, Germain, Declercq & Woolfson, 1980) direct-methods program. Leastsquares refinement with isotropic thermal parameters led to R = 0.108. The geometrically constrained H atoms were placed in calculated positions 0.95 Å from the bonded C atom and allowed to ride on that atom with B fixed at 5.5 Å^2 . The methyl H atoms were included as a rigid group with rotational freedom at the bonded C atom (C-H = 0.95 Å, B = 5.5 Å²). Scattering factors and anomalous-dispersion corrections from International Tables for X-ray Crystallography (1974); structure refined with SHELX76 (Sheldrick, 1976). $\sum w(|F_{o}| - |F_{c}|)^{2}$ minimized, weights = $[\sigma(F_o)^2 +$ $0.0001F_0^2$]⁻¹, 295 parameters varied. R = 0.048, wR = 0.048, S = 0.80. Δ/σ in final least-squares refinement cycle <0.01, $\Delta \rho$ < 0.2 e Å⁻³ in final difference map.

Discussion. Fractional coordinates and B_{eq} values are given in Table 1,[†] bond distances and angles in Table 2, and an ORTEP drawing (Johnson, 1976) in Fig. 1. A cell plot is provided in Fig. 2.

The observed structure reveals a trans stereochemical disposition for the substituents about C(3)and C(4). Consistent with this finding is the C(21)-C(3)-C(4)-C(5) torsion angle of 140.3° and the

† Lists of structure factors, anisotropic thermal parameters, least-squares-planes results, torsion angles, and final fractional coordinates for H atoms have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 51696 (11 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

Table 1. Final fractional coordinates and equivalent isotropic thermal parameters

	x	у	z	B_{eq}^{*} (Å ²)
O(1)	0.2844(2)	0.0351 (4)	0.1632(1)	2.28
O(2)	0.7571 (3)	-0.3062 (5)	0-1439(1)	2.82
0(3)	0.6887 (3)	-0.3064(5)	0.0446(1)	3.49
Q(4)	-0.0023(3)	0.2882(4)	-0.0067(1)	2.91
O(5)	-0.1912(3)	0.2458 (5)	0.0145(1)	3.07
O(6)	0.0382 (3)	-0.3865 (5)	0.1506 (2)	4.01
O(7)	0.1738 (3)	-0.4869 (4)	0.2220(1)	3.06
O(8)	0.4539 (3)	-0.1597 (5)	0.3132(1)	2.87
O(9)	0.4001 (3)	-0.1999 (6)	0.4000(1)	4.41
CÌÌ	0.1872 (4)	-0.0688(6)	0.1574 (2)	2.00
C(2)	0.2080 (4)	-0.2169 (6)	0.1870 (2)	2.04
C(3)	0.3321 (4)	-0.2138(6)	0.2212(2)	2.02
C(4)	0.3859 (4)	-0.0626 (6)	0.1925 (2)	2.11
C(5)	0.4631 (4)	-0·1199 (6)	0.1486 (2)	2.13
C(6)	0.5771 (4)	-0.1808 (6)	0.1714 (2)	2.13
C(7)	0.6432 (4)	-0.2414(6)	0.1324 (2)	2.07
C(8)	0.7794 (4)	-0.3713 (8)	0.0890 (2)	3.18
C(9)	0.6018(4)	-0·2422 (7)	0.0732 (2)	2.44
C(10)	0.4922 (4)	-0.1854 (7)	0.0501 (2)	2.81
C(11)	0.4219 (4)	-0.1210 (6)	0.0894 (2)	2.45
C(12)	0.0832 (4)	0.0079 (6)	0.1205 (2)	1.97
C(13)	0.1013 (4)	0.1124 (6)	0.0737 (2)	2.14
C(14)	0.0025 (4)	0.1844 (6)	0.0415 (2)	2.03
C(15)	-0.1242 (4)	0.3355 (7)	-0.0221 (2)	2.81
C(16)	-0.1094 (4)	0.1612 (6)	0.0545 (2)	2.27
C(17)	-0.1296 (4)	0.0610 (7)	0.0998 (2)	2.67
C(18)	-0.0307 (4)	-0.0159 (6)	0.1328 (2)	2.46
C(19)	0.1295 (4)	-0·3662 (6)	0.1836 (2)	2.34
C(20)	0.1053 (5)	-0.6426 (7)	0.2191 (2)	3.75
C(21)	0.3314 (4)	-0.1863 (7)	0.2861 (2)	2.86
C(22)	0.4751 (5)	-0.1643 (7)	ე.3725 (2)	2.82
C(23)	0.6008 (4)	-0.1158 (8)	0.3944 (2)	3.52
			• / • •	(0)

* $B_{eq} = \frac{4}{3}[a^2b_{11} + b^2b_{22} + c^2b_{33} + ab(\cos\gamma)b_{12} + ac(\cos\beta)b_{13} + b^2b_{22} + b^2b_{23} + b^2$ $bc(\cos\alpha)b_{23}$].

Table 2. Bond distances (Å) and angles (°)

O(1)-C(1)	1.364 (5)	O(1)-C(4) 1.	460 (5)
O(2) - C(7)	1.381 (5)	O(2)-C(8) 1.	439 (5)
O(3)-C(8)	1.429 (5)	O(3)–C(9) 1.	381 (5)
O(4)-C(14)	1.379 (5)	O(4)-C(15) I.	428 (5)
O(5)-C(15)	1.423 (5)	O(5)C(16) 1.	374 (5)
O(6)-C(19)	1.199 (5)	O(7)-C(19) 1.	340 (5)
O(7)-C(20)	1.441 (6)	O(8)-C(21) 1.	451 (5)
O(8)-C(22)	1.363 (5)	O(9)-C(22) 1.	186 (6)
C(1) - C(2)	1.347 (6)	C(1)-C(12) 1.	472 (6)
C(2)–C(3)	1.507 (5)	C(2)–C(19) 1-	465 (6)
C(3)-C(4)	1-536 (6)	C(3)–C(21) 1-	529 (6)
C(4)C(5)	1.525 (6)	C(5)-C(6) 1.	406 (6)
C(5)–C(11)	1.382 (5)	C(6)-C(7) 1.	360 (6)
C(7)–C(9)	1.380 (6)	C(9)-C(10) 1	353 (6)
C(10)-C(11)	1-408 (6)	C(12)-C(13) 1.	406 (6)
C(12)-C(18)	1-392 (5)	C(13)–C(14) 1	367 (6)
C(14)–C(16)	1.375 (6)	C(16)–C(17) 1	365 (6)
C(17)–C(18)	1.392 (6)	C(22)–C(23) 1	492 (7)
C(1) - O(1) - C(4)	107-8 (3)	C(7)-O(2)-C(8)	104-9 (3)
C(8)-O(3)-C(9)	105-8 (3)	C(14)–O(4)–C(15)	105-1 (4)
C(15)-O(5)-C(16)	105-6 (3)	C(19)-O(7)-C(20)	114-8 (4)
C(21)-O(8)-C(22)	115-6 (4)	O(1)-C(1)-C(2)	112-9 (4)
O(1)-C(1)-C(12)	112-4 (4)	C(2)-C(1)-C(12)	134.8 (4)
C(1) - C(2) - C(3)	109.1 (4)	C(1)-C(2)-C(19)	127.0 (4)
C(3)-C(2)-C(19)	123.7 (4)	C(2)-C(3)-C(4)	101-1 (3)
C(2)-C(3)-C(21)	111.4 (4)	C(4)-C(3)-C(21)	113-1 (4)
O(1) - C(4) - C(3)	105-1 (3)	O(1) - C(4) - C(5)	110-2 (3)
C(3) - C(4) - C(5)	112.7 (4)	C(4)-C(5)-C(6)	116-8 (4)
C(4) - C(5) - C(11)	122-2 (4)	C(6)-C(5)-C(11)	120-9 (4)
C(5)-C(6)-C(7)	116.7 (4)	O(2)-C(7)-C(6)	127-5 (4)
O(2)-C(7)-C(9)	110.3 (4)	C(6)-C(7)-C(9)	122-2 (4)
O(2)-C(8)-O(3)	107.7 (4)	O(3)-C(9)-C(7)	109.3 (4)
O(3)-C(9)-C(10)	128.3 (4)	C(7)-C(9)-C(10)	122-4 (5)
C(9)-C(10)-C(11)	116.7 (4)	C(5)-C(11)-C(10)	121.0 (4)
C(1)-C(12)-C(13)	118.7 (4)	C(1)-C(12)-C(18)	121.1 (4)
C(13)-C(12)-C(18)	3) 120-1 (4)	C(12)-C(13)-C(14)	116.7 (4
O(4)-C(14)-C(13)	127.2 (4)	O(4) - C(14) - C(16)	110.2 (4
C(13)-C(14)-C(16)	5) 122-6 (4)	O(4)-C(15)-O(5)	108.8 (4
O(5)-C(16)-C(14)	109.9 (4)	O(5)-C(16)-C(17)	128-1 (4
C(14)-C(16)-C(1	7) 122.0 (4)	C(16)-C(17)-C(18)	116-6 (4)
C(12)-C(18)-C(1	7) 122.0 (4)	O(6)-C(19)-O(7)	121.8 (5
O(6)-C(19)-C(2)	126.8 (5)	O(7) - C(19) - C(2)	111-4 (4
O(8)-C(21)-C(3)	106.6 (3)	O(8)-C(22)-O(9)	122-2 (5
O(8) - C(22) - C(23)) 109.7 (5)	O(9) - C(22) - C(23)	128-1 (5

^{*} Physical data: IR (KBr) 2905, 2840, 2790, 1730, 1690, 1595, 1480, 1440, 1370, 1360, 1315, 1230, 1155, 1100, 1070, 1035, 930, 860, 810, 750 cm⁻¹; ¹H NMR (CDCl₃, 200 MHz) δ 7.50 (dd, J = 8.28, 1.57 Hz, 1 H), 7.40 (d, J = 1.57 Hz, 1 H), 7.95–7.80 (m, d4 H), 6.02 (s, 2 H), 5.98 (s, 2 H), 5.41 (d, J = 4.42 Hz, 1 H), 4.43 (dd, J = 10.85, 3.65 Hz, 1 H), 4.29 (dd, J = 10.85, 7.95 Hz, 1 H),3.68 (s, 3 H), 3.7-3.5 (m, 1 H), 2.10 (s, 3 H); analysis calculated for C₂₃H₂₀O₉: C, 62·70, H, 4·52%; found C, 62·63, H, 4·62%.

H(1)C(3)-C(3)-C(4)-H(1)C(4) torsion angle of -94.9° . The observed 4.42 Hz vicinal hydrogen coupling constant between C(4)-H and C(3)-H suggests some relaxation of these torsion angles when the compound is in solution (Karplus, 1963). Similar coupling constants (J = 5 Hz) have been reported for some related 3,4-disubstituted-2,5-diaryltetrahydro-furans (Cooper, Gottlieb, Lavie & Levy, 1979).

The dihydrofuran ring exists in an envelope conformation with ring atoms O(1), C(1), C(2) and C(3) describing a plane to within 0.022 Å. Ring atom C(4) deviates from this plane by 0.309 Å. The atoms C(1), C(2), O(1) and C(12) are planar to within 0.003 Å, and ring atoms C(3) and C(4) lie -0.114 and 0.216 Å out this plane, respectively. The C(1)-C(2)-O(1)-C(12) plane intersects the dihydrofuran ring

C13

C14

Fig. 2. Cell plot of the title dihydrofuran.

plane at an angle of $3 \cdot 26^{\circ}$. Similarly, atoms C(1), C(2), C(3) and C(19) define a plane that intersects the dihydrofuran ring plane at an angle of $5 \cdot 18^{\circ}$. These atoms are within $0 \cdot 028$ Å of planarity. Ring atom O(1) deviates from the C(1)–C(2)–C(3)–C(19) plane by $0 \cdot 161$ Å and atom C(4) by $0 \cdot 456$ Å. As expected, the 2-aryl ring atoms C(12) through C(18) are planar to within $0 \cdot 008$ Å. This plane intersects the O(1)–C(1)–C(2)–C(3) plane at an angle of $35 \cdot 89^{\circ}$. Methylenedioxy atoms O(4), O(5) and C(15) lie out of the 2-aryl ring plane by $0 \cdot 028$, $0 \cdot 038$ and $-0 \cdot 030$ Å, respectively. Likewise, the 5-aryl ring atoms C(5) through C(7) and C(9) through C(11) describe a plane to within $0 \cdot 006$ Å. Methylenedioxy atom O(2) deviates from this plane by $0 \cdot 010$ Å, O(3) by $0 \cdot 036$ Å, and C(8) by $-0 \cdot 169$ Å.

The ring geometry of this compound induces some internal bond angle compression for atoms C(1) through C(4). The bond angles $112.9 (4)^{\circ}$ for O(1)-C(1)-C(2) and 109.1 (4)° for C(1)-C(2)-C(3) differ substantially from that normally associated with sp^2 hybridized carbon. As a result of this geometric angle compression, the angles C(2)-C(1)-C(12), C(1)-C(12)C(2)-C(19) and C(3)-C(2)-C(19) broaden to 134.8(4), 127.0(4) and $123.7(4)^{\circ}$, respectively. Similarly at the sp³-hybridized centers, the C(2)-C(3)-C(4) bond angle is $101 \cdot 1 (3)^{\circ}$ and the O(1)-C(4)-C(3) angle is $105 \cdot 1 (3)^{\circ}$. The bond angle C(4)-C(3)-C(21) in turn broadens to $113 \cdot 1$ (4)°, the angle C(2)-C(3)-C(21) to $111\cdot4$ (4)° and bond angle C(3)-C(4)-C(5) to 112.7 (4)°. Bond lengths between atoms C(1) through C(4) are unaffected by ring geometry, however. The C(1)-C(2) bond length is 1.347 (6) Å, and the distances between C(2)–C(3) and C(3)-C(4) are 1.507 (5) and 1.536 (6) Å, respectively.

An analysis of the closest intermolecular contact distances reveals that van der Waals forces are likely to be a dominant stabilizing force in the crystal lattice. Several interactions were noted to occur with neighboring molecules. The hydrogen to non-hydrogen contact distance between H(2)C(8) and O(6) is 2.44 Å on a molecule related to that in Table 1 by x-1, y, z. The corresponding intermolecular C(8) to O(6) separation is 3.067 (6) Å. The H to H contact distance H(1)C(4) to H(1)C(3) on the same molecule at 1-x, $y-\frac{1}{2}$, $\frac{1}{2}-z$ is 2.74 Å. The non-H to H contact distance from O(4) to H(2)C(15) at -x, 1-y, -z is 2.53 Å, and the corresponding O(4) to C(15) internuclear separation is 3.293(6) Å. For a molecule at x-1, y+1, z, the distance O(5) to H(1)C(8) is 2.74 Å, while the H to H contact distances H(2)C(15) to H(2)C(8) and H(2)C(15) to H(1)C(8) are both 2.87 Å. Other noticeably short non-H to H contact distances include O(9) to H(1)C(10) at 2.68 Å for a molecule at x, $-y-\frac{1}{2}$, $\frac{1}{2}+z$, and the O(4) to H(2)C(8) and O(9) to H(1)C(8) separations of 2.66 and 2.64 Å, respectively, with the neighboring molecules at 1-x, y, -z and 1-x, $\frac{1}{2} + v$, $\frac{1}{2} - z$, respectively.

Intermolecular van der Waals interactions may prove to be important in the binding of an antagonist to the PAF-membrane receptor site. Additional investigations are now in progress in our laboratory to determine the utility of this X-ray crystallographic approach to the design of potent and specific antagonists and a drug-receptor site binding model.

This work was supported in part by the Elsa U. Pardee Foundation (JRP), the American Cancer Society, Illinois Division, Inc. (JRP, grant #87-53), the Milheim Foundation (JRP, grant #87-32) and by the Donors of the Petroleum Research Fund (JRP and RDR), administered by the American Chemical Society. The US National Science Foundation's Chemical Instrumentation Program provided funding to purchase the diffractometer.

References

BIFTU, T., GAMBLE, N. F., DOEBBER, T., HWANG, S.-B., SHEN, T.-Y., SNYDER, J., SPRINGER, J. P. & STEVENSON, R. (1986). J. Med. Chem. 29, 1917–1921.

BIFTU, T. & STEVENSON, R. (1987). Phytother. Res. 1, 97–106.

- BRAQUET, P. & GODFROID, J. J. (1986). Trends Pharmacol. Sci. 7, 397-403.
- CODDING, P. W. (1988). Symposium on Use of Crystal Structures and Databases in Drug Design. 21st National Medicinal Chemistry Symposium, Minneapolis, Minnesota, USA.
- CODDING, P. W. & MUIR, A. K. S. (1985). Mol. Pharmacol. 28, 178-184.
- COOPER, R., GOTTLIEB, H. E., LAVIE, D. & LEVY, E. C. (1979). Tetrahedron, 35, 861-868.

- COREY, E. J., CHEN, C.-P. & PARRY, M. J. (1988). Tetrahedron Lett. 29, 2899-2902.
- ETIENNE, A., HECQUET, F. & BRAQUET, P. (1988). Prog. Clin. Biol. Res. 272, 135-143.
- GODFROID, J. J. & BRAQUET, P. (1986). Trends Pharmacol. Sci. 7, 368-373.
- HWANG, S.-B., LAM, M.-H., BIFTU, T., BEATTIE, T. R. & SHEN, T.-Y. (1985). J. Biol. Chem. 260, 15639–15645.
- International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
- JOHNSON, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- KARPLUS, M. (1963). J. Am. Chem. Soc. 85, 2870-2871.
- MCMANUS, L. M. (1986). Pathol. Immunopathol. Res. 5, 104-117.
- MAIN, P., FISKE, S. J., HULL, S. E., LESSINGER, L., GERMAIN, G., DECLERCQ, J.-P. & WOOLFSON, M. M. (1980). MULTAN80. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
- PETERSON, J. R., DO, H. D. & ROGERS, R. D. (1989). Acta Cryst. C45, 1059–1063.
- PETERSON, J. R., SMILLIE, T. J. & ROGERS, R. D. (1989). Acta Cryst. C45, 297-300.
- PONPIPOM, M. M., HWANG, S.-B., DOEBBER, T. W., ACTON, J. J., ALBERTS, A. W., BIFTU, T., BROOKER, D. R., BUGIANESI, R. L., CHABALA, J. C., GAMBLE, N. L., GRAHAM, D. W., LAM, M.-H. & WU, M. S. (1988). Biochem. Biophy. Res. Commun. 150, 1213-1220.
- SHELDRICK, G. M. (1976). SHELX76. Program for crystal structure determination, as locally modified. Univ. of Cambridge, England.
- SMITH, L. J., RUBIN, A. E. & PATTERSON, R. (1988). Am. Rev. Respir. Dis. 137, 1015-1019.
- VENUTI, M. C. (1985). Annu. Rep. Med. Chem. pp. 193-202.
- WU, M. S., BIFTU, T. & DOEBBER, T. W. (1986). J. Pharmacol. Exp. Therap. 239, 841-845.
- YANG, F. C., TROST, M. K. & FRISTAD, W. E. (1987). Tetrahedron Lett. 28, 1493-1496.

Acta Cryst. (1989). C45, 1167–1169

Structure of (\pm) -3-[1-Hydroxy-1-(4-methylphenyl)ethyl]-6-phenyl-1,2,4,5-tetrazine

By George Ferguson

Department of Chemistry and Biochemistry, University of Guelph, Guelph, Ontario, Canada N1G 2W1

JOHN N. LOW

Department of Applied Physics and Electronic and Manufacturing Engineering, University of Dundee, Dundee DD1 4HN, Scotland

AND DOUGLAS G. NEILSON AND SHEELAGH N. SCRIMGEOUR

Department of Chemistry, University of Dundee, Dundee DD1 4HN, Scotland

(Received 10 November 1988; accepted 11 January 1989)

Abstract. $C_{17}H_{16}N_4O$, $M_r = 292.34$, monoclinic, C2/c, a = 22.827 (7), b = 6.004 (4), c = 23.276 (5) Å, $\beta = 108.16$ (3)°, V = 3031.3 Å³, Z = 8, $D_x = 1.28$ g cm⁻³, 0108-2701/89/081167-03\$03.00 $\lambda(\text{Mo } K\alpha) = 0.71073 \text{ Å}, \ \mu = 0.8 \text{ cm}^{-1}, F(000) = 1232, T = 294 \text{ K}, R = 0.063 \text{ for } 879 \text{ unique observed reflections.}$ Bond lengths and angles lie within expected © 1989 International Union of Crystallography